7 research outputs found

    A low-cost indoor real time locating system based on TDOA estimation of UWB pulse sequences

    Get PDF
    One of the most popular technologies adopted for indoor localization is ultrawideband impulse radio (IR-UWB). Due to its peculiar characteristics, it is able to overcome the multipath effect that severely reduces the capability of receivers (sensors) to estimate the position of transmitters (tags) in complex environments. In this article, we introduce a new low-cost real-time locating system (RTLS) that does not require time synchronization among sensors and uses a one-way communication scheme to reduce the cost and complexity of tags. The system is able to evaluate the position of a large number of tags by computing the time difference of arrival (TDOA) of UWB pulse sequences received by at least three sensors. In the presented system, the tags transmit sequences of 2-ns UWB pulses with a carrier frequency of 7.25 GHz. Each sensor processes the received sequences with a two-step correlation analysis performed first on a field-programmable gate array (FPGA) chip and successively on an on-board processor. The result of the analysis is the time of arrival (TOA) of the tag sequence at each sensor and the ID of the associated tag. The results are sent to a host PC implementing trilateration algorithm based on the TDOA computed among sensors. We will describe the characteristics of the custom hardware that has been designed for this project (tag and sensor) as well as the processing steps implemented that allowed us to achieve an optimum localization accuracy of 10 cm

    Recent upgrades of the harmonic radar for the tracking of the Asian yellow-legged hornet

    Get PDF
    The yellow-legged Asian hornet is an invasive species of wasps, indigenous of the South-East Asia but quickly spreading in Southern Europe. Because of its exponential diffusion and its serious threat to the local honey bee colonies and to humans as well, restraint measures are under investigation. Among them, the harmonic radar described in (Ecology and Evolution, 6, 2016 and 2170) already proved to be a quite effective way to follow the hornets to their nests; it is in fact capable of tracking the flying trajectory of these insects, once equipped with a small transponder, in their natural environment. The aforementioned harmonic radar was upgraded after a period of intense experimentation; the capture of the hornets was enhanced as well, and other improvements were adopted in the mounting procedure of the transponder. Thanks to these upgrades, the flying capabilities of the hornets were not reduced and a huge collection of data was recorded. The main upgrade to the radar was the adoption of the vertical polarization of the radiated field, with the consequent redesign and manufacturing of the antennas and the different mounting of the transceiver on the insect. The installation of the radar on a telescopic tower drastically improved the maneuverability of the system and the capability to follow the insects’ preferential flying directions. Eventually, the system was able to produce much more continuous traces with a clear indication of the most probable position of the nest. The maximum range of detection was also increased to 150 m

    Design of an harmonic radar for the tracking of the Asian yellow-legged hornet

    Get PDF
    The yellow-legged Asian hornet is an invasive species of wasps, indigenous to the Southeast Asia but recently spreading in Southern Europe. Because of its exponential diffusion and its serious threat to the local honeybee colonies (and to humans as well), restraint measures are currently under investigation. We developed and tested an harmonic radar capable of tracking the flying trajectory of these insects, once equipped with a small transponder, in their natural environment. Several hornets were captured close to a small cluster of honeybee hives, tagged with different transponders and then released in order to follow the flight toward their nest. On-field testing proved an initial maximum detection range of about 125 m in a hilly and woody area. A number of detections were clearly recorded, and preferential directions of flight were identified. The system herein described is intended as a first low-cost harmonic radar; it proved the capability to track the hornets while flying and it permitted to test the tagging techniques. Several upgrades of the system have been identified during this work and are extensively described in the last chapter. The designed system has three major advantages over conventional harmonic radars. First and most importantly, it adopts advanced processing techniques to suppress clutter and to improve target detection. Second, it allows radar operations in complex environments, generally hilly and rich in vegetation. Finally, it can continuously track tagged insects (24/7) and in any meteorological condition, providing an effective tool in order to locate the nests of the yellow-legged Asian hornet

    Design of an harmonic radar for the tracking of the A

    No full text
    The yellow-legged Asian hornet is an invasive species of wasps, indigenous to the Southeast Asia but recently spreading in Southern Europe. Because of its exponential diffusion and its serious threat to the local honeybee colonies (and to humans as well), restraint measures are currently under investigation. We developed and tested an harmonic radar capable of tracking the flying trajectory of these insects, once equipped with a small transponder, in their natural environment. Several hornets were captured close to a small cluster of honeybee hives, tagged with different transponders and then released in order to follow the flight toward their nest. On-field testing proved an initial maximum detection range of about 125 m in a hilly and woody area. A number of detections were clearly recorded, and preferential directions of flight were identified. The system herein described is intended as a first low-cost harmonic radar; it proved the capability to track the hornets while flying and it permitted to test the tagging techniques. Several upgrades of the system have been identified during this work and are extensively described in the last chapter. The designed system has three major advantages over conventional harmonic radars. First and most importantly, it adopts advanced processing techniques to suppress clutter and to improve target detection. Second, it allows radar operations in complex environments, generally hilly and rich in vegetation. Finally, it can continuously track tagged insects (24/7) and in any meteorological condition, providing an effective tool in order to locate the nests of the yellow-legged Asian horne

    Tracking the invasive hornet Vespa velutina in complex environments by means of a harmonic radar

    Get PDF
    Abstract An innovative scanning harmonic radar has been recently developed for tracking insects in complex landscapes. This movable technology has been tested on an invasive hornet species (Vespa velutina) for detecting the position of their nests in the environment, in the framework of an early detection strategy. The new model of harmonic radar proved to be effective in tracking hornets either in open landscapes, hilly environments and areas characterised by the presence of more obstacles, such as woodlands and urban areas. Hornets were effectively tracked in complex landscapes for a mean tracking length of 96 ± 62 m with maximum values of ~ 300 m. The effectiveness of locating nests was 75% in new invasive outbreaks and 60% in highly density colonised areas. Furthermore, this technology could provide information on several aspects of insect’s ecology and biology. In this case, new insights were obtained about the mean foraging range of V. velutina (395 ± 208 m with a maximum value of 786 m) and flying features (ground speed), which was 6.66 ± 2.31 m s−1 for foraging individuals (hornets that are not carrying prey’s pellet) and 4.06 ± 1.34 m s−1 for homing individuals

    Geotectonic significance of the Neoproterozoic ophiolitic metagabbros of Muiswirab area, South Eastern Desert, Egypt: constraints from their mineralogical and geochemical characteristics

    No full text
    corecore